1st Tidal and Water Level Working Group Meeting

DHN, Niteroi, Brazil 31/03/09 - 02/04/09

Vertical Offshore Reference Framework (VORF)

Chris Jones

United Kingdom Hydrographic Office

Presentation Structure

- What is VORF?
- Brief overview of the technical development
- Why is VORF needed?

What is VORF?

- VORF = Vertical Offshore Reference Frame
- A set of mathematical models of the major surfaces used in the current and future charting of UK home waters
- A suite of software utilities allowing the transformation of mapping and positioning data between the VORF surfaces

Current practice for bathymetric data processing

Ellipsoid

GRS80 Ellipsoid

Brief overview of the technical development of VORF

Technologies applied in development of VORF

- Tide gauge data
- GPS data
- Satellite altimetry
- Gravity field models
- Tidal modelling

VORF Overall Approach

Overview of VORF computation method

Monthly MSL Observations

Many tide gauge stations only have one month of observations.

Variations due to winds, pressure, currents, etc.

Correct by cross comparison.

RLR = Revised Local Reference, which is sea level relative to the land.

Spatial Correlation

Spatial Correlation Scatter Plots

Data sources: Tide Gauge data via the Permanent Service for Mean Sea Level (PSMSL)

- National Tidal and Sea Level Facility (NTSLF) stations
- High quality continuous observations
- BUT low spatial density

Data sources: Tide Gauges Admiralty Tide Table (ATT)

Around 700 Standard and Secondary Port locations
Good spatial density
BUT occasionally low precision due to short term data series

Chart Datum:

- VORF aims to unify all these separate datums into one, seamless surface
- Process involves verifying the link between CD and Ordnance Datum (the landlevelling height datum)

Technologies applied: Satellite Altimetry

THE UNITED KINGDOM HYDROGRAPHIC OFFICE

ERS1/2

Technologies applied: OSGM05 – the latest UK gravity field model (OSGM09 available soon)

River Datums

Use of Areas of Applicability

Boundaries of VORF Model: UK Continental Shelf

VORF software functionality

- Transformation between datums
- Estimated error in transformations
- Visualisation
- User error detection
- Point/file mode data import
- Deals with complexity of searching for special cases such as rivers and impounded datums.
- High speed data retrieval and processing.

VORF Application

Ultra Rapid Point in Polygon (PiP) Benchmark Tests

- 400,000 line segment polygon set
- Conventional desktop PC (1 Gb RAM, 3 GHz processor)
- 8,000,000 queries carried out correctly in 16 seconds (including file reading)
- University College London (UCL) has developed new concepts in high performance PiP tests
- Technique based on quadtree subdivision of analysis space

Current progress:

- V2.0 delivered to UKHO Jan 08.
- Now to do:
- Stakeholders to be revisited
- Needs full testing
- Needs to be developed into robust software
- Safety case

Accuracy achieved

- VORF was designed to be accurate to ±0.1m 1 sigma close to shore and ±0.15m 1 sigma offshore.
- Initial investigations show that it is slightly greater than this in some areas, but it will still be fit for purpose.
- VORF will be released with estimations of the uncertainties of the surfaces.

Why is VORF needed?

- Continuing developments in GPS
- LIDAR and multibeam technology
- Analogy with the Ordnance Survey heighting reference systems on land
- To deal with the increased use of GPS-based hydrographic surveys submitted to UKHO

How can VORF benefit the UKHO?

- Cost and efficiency of surveys
- Quality control
- Enabling new technologies
- Developing new products

Navigational users

Elimination of remote tide gauges

Specialist applications

•Tidal predictions at "virtual tide stations" – accessible via satellite web link.

•Ship equipped with VORF and GPS is its own tide gauge – compare current reading to prediction, plot enhanced route/timing for approach to critical areas.

Summary of VORF advantages

- VORF derives continuous surfaces, with fixed reference to ETRF89.
- It provides a consistent interpolation between Chart Datums, and methodology for extrapolation offshore.
- It eliminates some of the reliance on remote or expensive tidal observations.
- It has the potential to be built in to real-time applications.
- It fully exploits current and future GPS technology, and is the basis for future accuracy enhancements.

Conclusions

- VORF is an enabling technology
- Surveying without tide gauges cheaper, faster, more accurate
- New navigation and space management concepts
- Fully integrated data products
- SOLAS improved navigation in critical areas
- VORF will help UKHO in its development of marine charting and navigation products

